Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Burkhard Ziemer* and Rainer Mahrwald

Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany

Correspondence e-mail:
burkhard.ziemer@chemie.hu-berlin.de

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.090$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

1,2:5,6-Di-O-isopropylidene-3-O-methyl-sulfonyl- $\alpha-\mathrm{D}-\mathrm{gluc}$ furanose

The absolute chemical configuration of the title compound, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$, was determined unambiguously by X-ray diffraction for the first time.

Received 17 May 2004
Accepted 4 June 2004
Online 17 July 2004

Comment

The analytical and physical data of the title compound, (II), are in accordance with those described by Gracza \& Szolscanyi (2000). The absolute chemical configuration is in accordance with the NMR data (chemical shifts in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as well as coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectrum).

Experimental

The title compound, (II), was prepared by the reaction of 1,2:5,6-di- O-isopropylidene- α-D-glucofuranose (I) (Hardegger et al., 1957; Recondo \& Rinderknecht, 1960) with methanesulfonyl chloride and pyridine at room temperature. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.248\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.253(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 1.36\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.44\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.03(s, 3 \mathrm{H}$, $\left.-\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.9$ and $4.15(d d, J=4.2,9.1 \mathrm{~Hz}, 2 \mathrm{H}, A B X$ system $)$, $4.10(m, 2 \mathrm{H}), 4.73(d, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(d, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.88(d, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 112.7$, 109.6, 105.2, 83.7, 82.7, 79.8, 72.1, 67.6, 38.0, 26.9, 26.6, 26.2, 25.2.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}$	Mo $K \alpha$ radiation
$M_{r}=338.37$	Cell parameters from 5000
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$	reflections
$a=8.866(3) \AA$	$\theta=2.5-25.0^{\circ}$
$b=9.2962(16) \AA$	$\mu=0.24 \mathrm{~mm}^{-1}$
$c=19.361(3) \AA$	$T=150(2) \mathrm{K}$
$V=1595.8(7) \AA^{3}$	Block, white
$Z=4$	$0.48 \times 0.40 \times 0.20 \mathrm{~mm}$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Stoe IPDS diffractometer	$R_{\text {int }}=0.086$
φ scans	$\theta_{\max }=25.3^{\circ}$
6444 measured reflections	$h=-10 \rightarrow 10$
2686 independent reflections	$k=-11 \rightarrow 8$
2236 reflections with $I>2 \sigma(I)$	$l=-19 \rightarrow 23$

organic papers

Figure 1

Molecular structure of (II), showing 60% probability displacement ellipsoids. H atoms have been omitted for clarity.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.090$
$S=0.93$
2686 reflections
209 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0459 P)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.010 (2)
Absolute structure: Flack (1983)
Flack parameter $=-0.03(10)$

H atoms were constrained as riding atoms, with $\mathrm{C}-\mathrm{H}=1.00,0.99$ and $0.98 \AA$ in the methine, methylene and methyl groups, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$.

Data collection: IPDS (Stoe \& Cie, 1997); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft.

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gracza, T. \& Szolscanyi, P. (2000). Molecules, 5, 1386-1398.
Hardegger, E., Schellenbaum, M., Huwyler, R. \& Züst, A. (1957). Helv. Chim. Acta, 40, 1816-1818.
Recondo, E., Rinderknecht, H. (1960). Helv. Chim. Acta, 43, 1653-1656.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1997). IPDS (Version 2.87), XRED32 and XSTEP. Darmstadt, Germany.

