Received 17 May 2004

Accepted 4 June 2004

Online 17 July 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Burkhard Ziemer* and Rainer Mahrwald

Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany

Correspondence e-mail: burkhard.ziemer@chemie.hu-berlin.de

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.090 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,2:5,6-Di-O-isopropylidene-3-O-methylsulfonyl-*a*-D-glucofuranose

The absolute chemical configuration of the title compound, $C_{13}H_{22}O_8S$, was determined unambiguously by X-ray diffraction for the first time.

Comment

The analytical and physical data of the title compound, (II), are in accordance with those described by Gracza & Szolscanyi (2000). The absolute chemical configuration is in accordance with the NMR data (chemical shifts in the ¹H and ¹³C NMR spectra as well as coupling constants in the ¹H NMR spectrum).

Experimental

The title compound, (II), was prepared by the reaction of 1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranose (I) (Hardegger *et al.*, 1957; Recondo & Rinderknecht, 1960) with methanesulfonyl chloride and pyridine at room temperature. ¹H NMR (300 MHz, CDCl₃): δ 1.248 (*s*, 3H, -CH₃), 1.253 (*s*, 3H, -CH₃), 1.36 (*s*, 3H, -CH₃), 1.44 (*s*, 3H, -CH₃), 1.253 (*s*, 3H, -SO₂CH₃), 3.9 and 4.15 (*dd*, *J* = 4.2, 9.1 Hz, 2H, *ABX* system), 4.10 (*m*, 2H), 4.73 (*d*, *J* = 3.8 Hz, 1H), 4.91 (*d*, *J* = 2.6 Hz, 1H), 5.88 (*d*, *J* = 3.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 112.7, 109.6, 105.2, 83.7, 82.7, 79.8, 72.1, 67.6, 38.0, 26.9, 26.6, 26.2, 25.2.

Crystal data	
$C_{13}H_{22}O_8S$ $M_r = 338.37$ Orthorhombic, $P2_12_12_1$ a = 8.866 (3) Å b = 9.2962 (16) Å	Mo K α radiation Cell parameters from 5000 reflections $\theta = 2.5-25.0^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$
c = 19.361 (3) Å V = 1595.8 (7) Å ³ Z = 4 $D_x = 1.408 \text{ Mg m}^{-3}$ Data collection	T = 150 (2) K Block, white $0.48 \times 0.40 \times 0.20 \text{ mm}$
Stoe IPDS diffractometer φ scans 6444 measured reflections 2686 independent reflections 2236 reflections with $l > 2\sigma(l)$	$R_{int} = 0.086$ $\theta_{max} = 25.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 8$ $l = -19 \rightarrow 23$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Molecular structure of (II), showing 60% probability displacement ellipsoids. H atoms have been omitted for clarity.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.090$ S = 0.932686 reflections 209 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0459P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $\begin{array}{l} (\Delta/\sigma)_{max}=0.005\\ \Delta\rho_{max}=0.23 \ e \ \mathring{A}^{-3}\\ \Delta\rho_{min}=-0.43 \ e \ \mathring{A}^{-3}\\ Extinction \ correction: \ SHELXL\\ Extinction \ coefficient: \ 0.010 \ (2)\\ Absolute \ structure: \ Flack \ (1983)\\ Flack \ parameter=-0.03 \ (10) \end{array}$

H atoms were constrained as riding atoms, with C-H = 1.00, 0.99 and 0.98 Å in the methine, methylene and methyl groups, respectively, and $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *IPDS* (Stoe & Cie, 1997); cell refinement: *IPDS*; data reduction: *IPDS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Deutsche Forschungsgemeinschaft.

References

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). *Acta Cryst*. A**39**, 876–881.
- Gracza, T. & Szolscanyi, P. (2000). Molecules, 5, 1386-1398.
- Hardegger, E., Schellenbaum, M., Huwyler, R. & Züst, A. (1957). *Helv. Chim.* Acta, 40, 1816–1818.
- Recondo, E., Rinderknecht, H. (1960). Helv. Chim. Acta, 43, 1653-1656.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1997). *IPDS* (Version 2.87), *XRED*32 and *XSTEP*. Darmstadt, Germany.